Solids: Volume calculation, centroid coordinates
Here you will find formulas for determining the volume contents and centroid coordinates of simple solids. This information will assist you, for example, in determining the centroid of composite solids composed of simple subregions.
Solids: Volume calculation, centroid coordinates
| Conical solids | Cone |
|
$$\begin{align}V&=\dfrac{A \cdot h}{3}\\A&=r^2 \cdot \pi=\dfrac{d^2 \cdot \pi}{4}\\V&=\dfrac{1}{3} \cdot r^2 \cdot \pi \cdot h\\V&=\dfrac{1}{3} \cdot \dfrac{d^2 \cdot \pi}{4} \cdot h\end{align}$$ | $$\begin{align}C_x &= 0\\[7pt]C_y &= 0\\[7pt] C_z &= \dfrac{1}{4} \cdot h\end{align}$$ |
|